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TECHNICAL NOTE 3467

EFFECT OF INTERACTION ON LANDING-GEAR BEHAVIOR AND
DYNAMIC LOADS IN A FLEXIBLE ATRPLANE STRUCTURE

By Francis E. Cook and BenJjamin Milwitzky
STMMARY

The effects of lnteraction between a landing gear and a flexible
airplane structure on the behavior of the landing gear and the loads in
the structure have been studied by tresting the equations of motion of
the airplane and the landing gear as a coupled system. The landing gear
ls considered to have nonlinear characteristics typical of conventional
gears, namely, veloclty-squared damping, polytroplc alr-compression
springing, and exponentigl tire force-deflection characteristics. For
the case where only two modes of the structure are considered, an equiv-
alent three-mass system is derived for representing the alrplane and
landing-gear combination, which mey be used to simulete the effects of
structural flexibvility in Jjig drop tests of landing gears.

As examples to illustrate the effects of intersction, numerical cal-
culations, based on the structural properties of two large airplanes
having considerably different mass and flexibility characteristics, are
presented. For the particular cases consldered, it was found that the
effects of interaction can result in appreclable reductions in the magni-
tude of the landing-gear force, particularly when the £lexibility of the
alrplane structure is large and the nabursl freguency is smali. Thus,
neglect of interactlon effects, that is, the use of the landing-gear
forcing function for a rigid airplane, in a dynamic analysis of a flexible
alrplane can lead to the calculatlion of excessive loads in the sirplane
structure.

In the case of one of the airplanes considered, the structural loads
calculated from the interaction solutions are —reater than those for a
completely rigid airplane treatment (rigi® structure subjected to rigid-
body forcing function) because the effects of dynamic msgnification more
than overcome the reduction in landing-gear force due to interaction.

In the case of the second airplane, b:-ause of the relatively large natu-
ral period of the structure in comparison with the duration of the lmpact
pulse, the dynamic magnification factor is appreciebly less than unity.
This effect, coupled with the reductions in landing-gear force due to
interaction, results in structural loads that are less than those for a
rigid airplane.
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INTRODUCTION

In the design of landing gears it is usually assumed that the alr-
plane lis a rigid body and development tests are frequently carried out
in a drop-test Jjig with a landing gear sbtached to a concentrated mass.
In so doing, it is tacitly assumed that the interaction between the
motions of the landing gear and the deformations of the airplane structure
has 1little or no effect on the behavior of the landing gear. Also, loead
time hlstories obtained on a rigld-body basis are often used as the
foreing function in a dynsmic analysis to determine the inertis loads
and stresses in flexible airplene structures, again under the assumption
that the behavior of the landing gear 1s independent of the effects of
airplane flexibillity. Although it has been recognized that this assump-
tion 1s not altogether valid, the errors involved have not been considered
particularly significant in the past because: (a) The errors were thought
to be on the conservative side and (b) until comparatively recently main
landing gesrs have generally been located very close to the nodes of the
fundemental bending mode of the wing, and the alrplene therefore closely
approximated a rigid body insofar as the behavior of the landing gear is
concerned. However, the trend toward lncreased size of airplanes, the
disposition of large concentrated messes in outboard locations in the
wings, the use of thinner wings, and the development of unconventional
configurations tend to increase the flexibility of the airplane structure
and reduce the natural frequencies of vibration. These characteristics
tend to cause an increase in the amplitudes of the oscillatory motions of
the landing-gear attachment points relative to the center of gravity of
the flexible system during impact so that the effects of interaction are
increased, both with regerd to the behavior of the landing gear and the
dynamic loads in the structure, particularly when the natural period of
the fundamental mode of the structure approaches the time duretion of
the impect pulse.

A number of analybical studies and some simplified model tests
(refs. 1 to 5) which have been made to eveluate the effects of structural
flexibility on landing-gear loads have indicated some reductlon in landing-
gear force due to the effects of structural deformation. However, in
view of the fact that these previous investigations considered only rather
highly idealized linesr-spring landing geers wlth elther no deamping at
all or viscous damping, a further study of the effects of interaction
between the landing gear and the airplane structure has been made with
& more realistic representation of the landing gear. In the present
analysis, as in reference 6, the landing geaxr 1s considered to have
velocity-squared damping, polytropic air-compression springing, and
exponential tire force-deflection characteristics, as i1s the case with
conventional oleo-pneumatic landing gears in current use. The particular
purposes of this investigation are to evaluate the effects of interaction
on landing-geasr behavior and to study the errors introduced into the cal-
culated loads in the structure (applied loads, accelerations, bending
moments, and shears) when a dynamic analysis is made on the basis of
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applying the landing-gear forcing function for a rigid body to a flexible
airplane. For these purposes, case-history studies, based on the struc-
tural properties of two large airplanes having considersebly different mass
and flexibility cheracteristics, are presented. In order to cover a range
of parameters, the landing gear of each airplane was assumed to be located
at three arbitrary spanwise positions in addition to its original loecation.

The basic analysis of the landing gear and the alrplane structure
as a coupled system is presented in a general form. In the numerical
examples presented, however, the system is simplified by considering the
motions of the alrplane in its first two structural modes only. With
these restrictions, the combination of airplane and landing gear can also
be represented by an equivalent three-mass system which may be used in
Jig drop tests of landing gears to simulate the primary effects of struc-
turel flexibility. A similar type of concentrated-mass system was used
in the study of the hydrodynamic impact of a flexible seaplane in ref-
erence T. '

SYMBOLS
General
g gravitational constant -
t time after initial contact
T time variaeble of integration
T time to meximum lending-geear Fforce
t! time after maximum landing-gear force
Vo vertical veloclty at initial contact
Q clrcular frequency of sine pulse
Q1 circular frequency of cosine pulse
A any varisble
KP value of any variable A at end of pth Interval subsequent

to beginning of numerical-integration procedure
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Landing Gear

pneumatic area of shocngtrut

hvdraulic area of shock strut, ,A; ~ AP

:nternal cross-sectional area of shock-strut inner cylinder
net orifice area of shock strut, Ag - 4p

area of fixed opening in orifice plate

cross-sectional area of metering pin or rod in plane of
orifice

orifice discharge coefficient

vertical component of force in shock strut subsequent to
beginning of shock-strut deflection

vertical force applied to tlre at ground

unsprung mass below shock strut

constents in tire force-deflection relatlonship

polytropic exponent for . alr-compression process in shock
strut

air pressure in shock strut when fully extended
meass density of hydraulic fluid

alr volume of shock strut when fully extended
shock-strut stroke

duration of lmpact pulse

angle between shock-strut axis and vertical
welght of unsprung mass below shock strut

vertlcal displacement of landing-geer attachment point from
position at initial contact
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Zn vertical displacement of axle from position at initial contact

Distributed Structure

an generalized coordinate for nth mode

P angle of tﬁist of transverse station

®n modal function for torsion in nth mode

w vertical displacement of elastic axils from position at
initisl contact

Wn modal function of elastic axis for bending in nth mode

€ vertical displacement of station masé centers from position

at initlal contact

En modal function of station mass centers for coupled bending-
torsion in nth mode

En modal amplitude of landing-gear attachment point for coupled
bending-torsion in nth mode

€ chordwise distance between elastic axls and station mass
center

b wing span

R bending moment

¥ verticel component of applied landing-geasr force

fy natural frequency of first deflection mode

I polar moment of inertia of wing cross section about station
mess center :

I.o polar moment of lnertia of wing cross sectlon sbout elastic
axis :

X radius of gyratlon of wing station sbout elastic axis

L 11ft force per unit length of span

m mass per unit length of span



Zf

day

Wy,

NACA TN 3467

generalized mess for nth mode

cireular frequency of nth mode
generalized force in nth mode

shear

naturel perlod of nth mode

chordwise distance between elastlc axis and any arbitrary
point

chordwise distance between elastic axlis and landing-gear
attachment point

spanwise distance from airplane center plene to any transverse
station

spanwise dlstance from sirplane center plane to landing~gear
station

vertical displacement of any point from position at initial
contact

vertical displacement of landing-gear attachment point from
position at initial contact

vertical dlsplacement of axle from position at initlal contact
virtual displacement of generalized coordlnate of nth mode

virtual work in nth mode

Equivalent Three-Mass System

vertical displacement of center of gravity of spring-connected
masses from position of initial contact

spring constant

1ift force acting or mass my

1ift force acting on mass mg
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LA

s

mass acting directly on landing gear
elastically supported mass
natural frequency of vibration of spring-connected masses

deflection of spring

welght of mass acting.directly on lending gear
welght of elastically supported mass

vertical deflection of landing-geer attachment point
vertical deflection of elastically supported mass

vertical displacement of axle from position et initisl contact

Aerodynemic

total wing area

wing area assumed concentrated at station i
1ift coefficlent

11ift coefficient at instant of initial contact

lift-curve slope

flight-path angle

flight-path angle at instant of initial contact

mass density of air

landing speed of airplene

total weight of ailrplane
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Subscripts:

a aerodynamic

£ landing-gear attackhment point

g landing-gear station

i any spanwise station

n pertaining to the nth mode

0 zero or rigid-body mode

T at Instant of initial shock-strut motion
T at instant of maximum landing-gear force
max maxcimum

The use of dots over symbols indicates differentiation with respect
to time t or T. All translations are positive downward (see figs. 1
to 3). The absolute value of any term is indicated by | () |.

ANALYSIS

In order to study the behavior of a landing geesr and a flexible
airplane structure as mutually interacting elements of a coupled system,
the equations for the landing-gear force are combined with the equations
of motion of the structure. The motions of the structure are treated by
the mode-superposition approach, wherein the deflections of the structure
are expanded in terms of its natural modes of vibration. The effects of
interaction between the landing gear and the structure are introduced by
expressing the landing-gear force in terms of the motions of the landing-
gear attachment point and the wheel sxle (or unsprung mess) rather than
as an arbitrary function of time.

Because conventional oleo-pneumatic shock struts do not begin to
deflect until some finite time afber initlal contact of the tire with
the ground, the impact is treated in two parts, namely, the phases prior
to and subsequent to the beginning of shock-strut deflection, where the
initial conditions for the second phase are determined from the terminel
conditions for the first phase.

In the first part of the analysis, the equations for the landing-
gear force ave presented. Then, the deflections of the structure are
expanded in terms of coupled modes and the resultlng equations of motion
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for the system are presented in e general form. For the purpose of
indicating the effects of interaction, however, the system used in the
mmerical trend studies has been simplified by restricting considerastion
of the structural deflections to the first two modes of the expansion.
Within the framework of this two-mode treatment, it is also shown that
the alrplane structure can be represented by an equivalent system of
spring-connected concentrated messes, which may be used to simulate the
effects of structural flexibility in Jig drop tests of landing gears.

Landing-Gear Force

An analysis of the behavior of the conventional type of oleo-
pneumatic landing gear was presented in reference 6. In this study the
mass sbove the landing gear was considered as a rigid body; the system
treated therefore had two degrees of freedom and is schematically repre-
sented in figure 1. The anslysis of the landing gear considered the
velocity-squared demping of the metering orifice, the air-compression
springing of the shock strut, the nonlinear force-deflection character-
istics of the tire, and the intermal shock-strut friction forces. Cal-
culated time histories of the landing-gear forces and the motions of the
system were in good agreement with experimental data obtained in drop
tests.

In the present study the rigld mass is replaced by a flexible air-
plane structure, but the treatment of the landing gear 1is essentially
the same as that in reference 6. However, since conventional landing
gears are inclined forwerd so as to minimize normal forces and bending
moments due to the combination of wvertical and drag forces, it will be
assumed that the resultant force on the landing gear lies along the axis
of the shock strut so that bending moments and resulting internsl friction
forces are neglected in the present anslysis.

In view of the Pfact that conventional oleo-pneumstic shock struts
ere preloeded with alr and therefore do not begin to deflect until some
finite time +t4 after initial contact of the tire with the ground, the

impact must be trested in two phases. In the first phase, since the
strut is effectively rigid, the landing gear has only one degree of
freedom and the motion of the complete system of the landing gear and
alrplane 1s governed by the force between the tire and the ground. This
ground force arises from the deflectlon of the tire and, in general, may
be written as

Fvg = Fvg( Zu) (1)

the exact variation depending on the tire force~deflection cheracter-
istics. Prior to the beginning of shock-strut deflection
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Fy, = Fyy(2e) (t S tq) (1a)

since zy = zp. (This relationship is exact when the landing gear is
vertical and holds very closely when the gear is inclined.)

The shock strut starts to deflect at the time <+, when the force

exerted on the airplane by the shock strut becomes equal to the air-
pressure preloading force in the strut. At this instant the free-body
equation for the unsprung mass of the landing gear is

mte, + Fyg(22,) = Pagha cos 0 + Wy (t = tq) (2)

Equation (2) provides the relationship between the terminal con-
ditions for the filrst phase of the Impect which, in conjunction with the
solution of the equations of motion for the gomplete system prior to
shock-strut deflection, determines the time 4+ when the shock-strut

begins to deflect and, thus, the terminal values of the variables for
the first phase of the impact, which also serve as the initiel conditions
for the second phase of the lmpsact.

After the shock strut begins to deflect, the lending gear has two
degrees of freedom since the motions of the landing-gear attachment point
end the motions of the unsprung maess are no longer the same. The equa-
tion for the vertical component of the force transmitted to the airplane
by the landing geer after the shock strut starts to deflect is (see ref. 6)

é [-"A]:].3 =5 AB. Vo n e ('l'; g + ) (3)
= |— 8 + p ~———— |cos
Fvs |él a(chn)E (=0o] <‘V’o - A&s> T
where
I el
cos ©
Be - By

Me
I
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The equation of motion of the unsprung mass is
myZy + Fvg(zu) = Fy, + Wy (t 2 1) (%)

In equation (3) the first term represents the hydraulic force in
the shock strut, where the factor 3/|8| indicates the change in sign
required between the compression and extension strokes. (During the
extensilon stroke of the shock strut, because of the action of the rebound
check valve or "snubber" incorporated in most landing gears, the net
orifice area Ap will generally be smaller and the orifice discharge
coefficient Cg will be different from the values which apply during
the compression stroke.) The second term of equation (3) expresses the
alr-compression force in the strut, based on a polytropic pressure-volume
relstionship. In equation (L), the force arising from the deflection of
the tire may be expressed as FVé(Zu) = mz,* for the usual type of pneu-

metic tire, where m and r are constants for each regime of the tire-
deflection process (see ref. 6).

Equations of Motlion of the Airplane

Differential equations of airplane structure.- In the mode-
superposition approach, the structure is considered to deflect in its
natural modes of vibration and the total displacement of any point in
the system is the sum of the displacements of the point in all the modes
considered. With this spproach the motlons are separated into functions
which depend only on the space coordinates and functions which depend on
the time varisble.

In the case of a landing impact the process is discontinuous at the
instent +t¢r when the shock strut begins to deflect. In the first phase
of the impact the shock strut is effectively rigild so that the motion
of the unsprung mass of the landing gear 1s essentially the same as the
motion of the landing-gear attachment point aend the force transmitted by
the landing gear to the airplene is the algebraic sum of the ground force
due to tire deflection, the inertia reaction of the unsprung mass, and
the weight of the unsprung mass. In the second phase of the impact, the
motion of the unsprung mess is not the same as the motion of the landing-
gesr attachment point and the force applied to the airplane is governed
by the relative motion between the landing-gear attachment polnt and the
unsprung mass, as given by equation (3).

The notation employed in the analysis is indicated in figure 2. A
typical transverse station located at a spanwise distance y <from the
airplene center plane is considered. The mess per unit length of span
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is designaeted by m. The translation of the elastic axis at the statlon
is denoted by w; { 1s the translation of the station mess center; € is
the chordwise distance between the station mass center and the elastic
axis; and ¢ 1is the angle of twist of the station. The translation of
an arbitrary point located at & chordwlse distance x from the elastic
exls is designated by z. The spanwlse distance from the center plane
of the airplane to the landing-gear station is indicated by Yg- The

translatlon of the landing-gear attachment point, or force-spplication
point, 1s designated =zp; the distance between the landing-gear attachment

point and the elastic axlis is denoted by xg.

In the most general case, the expansion of the deflection of the
structure in terms of its natural coupled modes of wibratlon may be
vwritten as

wiy,t) = > an(t)wn(y) (5)
n=0
and
o(yt) = io an(t)9,(5) (6)

where the subscript n denotes the order of any mode, 8an is the gen-~
eralized coordinate in the nth mode, and wn and ¢ are the corre-

sponding modal functions for bending and torsion, respectively.l

For later use it 1s convenlent to introduce expressions for the
displacements at other points in the structure.. Since the translation
of the station mass centers is given by { = w + e,

tle,7,t) = > an(t) tuly) (7)
n=0

where the modal function €, = wp + €pn. The translation of any arbi-
trary point along the chord 1s given by =z = w + xp; therefore,

2(x,9,8) = S an(t)zaly) | (®
n=0

IThe zero mode represents the translation of the alrplane as a rigid
body; therefore, wp = 1. In the present analysis, rigid-body pltching

is neglected; therefore @g = O.
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where the model function 2zn = wy + xp,. The translation of the landing-
gear attachment point is given by zf = w + xyp; therefore,

00

Zf(xf:Yg;t) = Z &n(t)gn(Yg) (9)

n=0
where the modal function £&p = wp + XPp.

By aspplication of Legrange's equatlion and the orthogonelity rels-
tionships between coupled modes, it can be shown (see, for example,
refs. 8 to 10) that the equation of motion for the airplane in the nth
mode mey be written as

Mpan + Mpopan = Qp (n=0,5,2,...) (10)

where Mp 1s termed the generalized mass for the nth mode and Q, is

the generelized force, as determined from virtual-work considerations.
For a continuous system, .
W

Mp = f o/2 miPdy + 2 f o/2 mePnvy dy + f o/ mK2pn2dy

o 0 0

b/2 b/2
= f mt,“dy + f o8y
0 0
J

In practice the spanwlise mass distribution is often approximsted
by breasking up the distribution into discrete mmsses which are concen-
trated at a finite number of stations along the span. With this spproach
equation (11) may be writiten as

n®> (mi""n;]_2 + 2miesQp, Wy, + miKigq)nie)
i

o) )
~ Z (micni + IO icpnifa)
i

where the subscript 1 denotes any spanwlse station.
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For the rigid-body mode (n = 0), since wg= o =1 and 9o = O,

o = H/;b/amdyNZmi

i

The relationship between Qn and the external forces can be deter-

mined by application of virtual-work principles. By definition, the
work done in the nth mode by the generalized force acting through a
virtual displacement of the generalized coordinate of the mode is equal
1o the work done by the external forces acting through virtual displace=-
ment of thelr points of application in the mode. Thus, the virtual work
done by the generslized force In the nth mode is

W, = Qp Bap (12)

In the case of an airplane during lending the external forces are
the distributed 1ift forces L(y), the distributed weights gm(y), and
the force F transmltted by the landing gear. The virtual work done
by these external forces in the nth mode is therefore given by

b/2 b/2
BdWp = - \/; Ldanpzy, dy - gk/; mdanl, dy + Fdapt,

b/2 b/2
= ~ Bap j; LGw-gﬁ mén dy + F&p (13)

Equating equetions (12) and (13) gives the following relationship
for Qup:

b/2 b/2
Q= - ‘/; Lz, dy - g\/; m§n dy + F¢,

Therefore, the equation of motion of the structure in the nth mode
is

| 5 b/2 b/2 "
Mnan+MnUhan=’F§n'_/; LGdy-s/; mE, dy

(n=0,L,2, . ..) (1%)
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For the rigid-body mode (n = 0), since ap =0 and zy= {o=Eo = 1,
equation (14%) becomes

b/2
Mo'a‘o=-F-fo (L - gm)dy

subject to the initial conditions

ag(0) = 0
and
80(0) = Vy

If the sirplane is assumed to be free of oscillations at the time
of initial contact,

8,(0) = a,(0) = 0 (n # 0)

Since

F(0) = - W,

equation (1h) epplied to the instant + = 0 gives

_ b/2 b/2
- 1 _
an(0) = Moo ? Wubn ‘jg Lz, dy + 8\/; mf, dy (n #0)

This relationship indicates that, in general, a finite static deflection
in the flexible modes will be present at the time of initisl contact.

At any subsequent time the deflection will be equal to this initial static
deflection plus an additional deflection ant which varies with time;

that is, ap = a,(0) + &ny+ This substitution permits equation (1) to

be written as
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Mngnt + Mnﬁm?ant = - (F + Wy)tp (n # 0) (15)

subJject to the initial conditilons

an, (0) = 4y, (0) = 0

In the remainder of the paper, for the sake of simplicity of notation,
the subscript t will be dropped, with the understanding that a, repre-

sents the time-varying part of the displacement of the nth mode, so that
equation (15) is written as

Mp&n + MpanPen = - (F + Wy)én (n # 0) (152)

If the external forces are specified solely as functions of time,
the equetlions of motion for each mode of the system ere uncoupled and
can be.solved individually. However, when the external forces depend on
the motions of the system, as in the case of the landing-gear force
during a landing impact, the relationships between the external forces
and the motions in the modes serve to couple the equations of motion so
that they must be solved simultaneously. Furthermore, in the case of
landing impact, since the process has two phases, as previocusly discussed,
the equations of motion for each phase must be solved separately, where
the initiasl conditions for the second phase are the same as the terminal
conditions for the first phase.

Motion prior to beginning of shock-strut deflection.- Since the
shock strut is effectively rigid in the first phase of the lmpact, the
force transmitted by the landing gear to the alrplane, F in equa-
tion (158), is equal to the ground force Fvg(Zf) less the inertis

reaction of the unsprung mass and the weight of- the unsprung mess, as
may be seen by considering the unsprung mass as a free body; thus,

F't§'b1- = Fvg(Zf) + m.uz°f - Wu

so that the motions of the system durlng the first-phase of the impact
are governed by the following set of differential equations:
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N

o = [ry (e + i - 5] - o

Myay + Myanay = 'I:Fvg(zf) + %Ef]gl
> (t € t7) (16)

My + My, = -[Fvg( zg) + mu;‘f}gm

o

where

g = 2?: enfn
n=0

7o = Ab/z(L—m)w='Ab/2Lw-%g

end the mth mode i1s the highest mode considered.

The initial conditions for equations (16) are the conditions at the
instant of initial contact, namely,

ag(0) = 0
ag(0) = Wo
ang.
an(0) = 85(0) = 0 (n # 0)

As previously indicated, the first phase of the impact terminates
at the time %4 when the force in the shock strut becomes equal to the
air-pressure preload force. The terminel conditions &t this instant, as
determined by consideration of the unsprung mass as & free body, are
given by equation (2), namely,

myzZe . + Fvg(sz) = Py fg COB O + W,
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The solution of equations (16) in conjunction with equation (2)
permits the determinstion of the time 4+ when the shock strut beglns .
to deflect and the values of the motion varisbles at this instant; these )
values then serve as the initial conditions for the second phase of the

impact.

Motion subsequent to beginning of shock-strut deflection.- In the
second phase of the impact the forece transmitied by the landing gear, F
in equation (l5a), 1s the vertical component of the shock-strut force FVB’

as given by equation (3). Thus, the motions of the system during the
second. phase of the impact are governed by the followlng set of dif-

ferential equations:
N

Molp = -(Fvs + Zo)

MiB) + MyanZay = -(Fvs + Wu) 5]

. y . . ° (t > tr) (17) iy
Mméy, + Mnﬂhﬁém.= '<FVs + W%)gm ®
Ty + FVE(Zu) = Fy, + Wy

where

Fyo = Fyg(zp-2y, Ee-2y)

as glven by equation (3); and

m
Zp = :E: anén
n=0

The first m equations of equatlions (17) represent the motions of
the airplane structure in its first m modes, whereas the last equation
of the set is the equation of motion of the unsprung mass of the landing o
gear as previously given by equation (4). The initial conditions for
equations (17) are the terminal conditions for equations (16) as previ-
ously discussed. In view of the fact that the landing-gear forcing e
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term Fvg is highly nonlinesar, analybtical solution of the system of equa-

tions (17) does not appear possible so that 1t is necessary to resort to
numerical-integration or analog methods.

Simplified System Considered in Numerical Studies

The preceding section has presented the equations of motion for a
flexible airplane coupled to a landing gear, which permlt calculation of
the motions of the system during a landing impact with consideration of
as many modes as may be desired. For the study of the effects of inter-
action between the landing gear and the structure, however, it appears
that the primary effects of structural flexibility on the behavior of
the landing gear can be represented by considering only the first deflection
mode in addition to the rigld-body mode.2 This simplification, which
greatly reduces the amount of computational work, is felt to be Justified
for the purposes of the present investigation since both theoretical con-
slderations and experimentsl data indicate that the higher modes should
have relatively little effect on the landing-gear performance. With this
assumption the equations of motion reduce to

Mogg = -[Fvg(zf) + myzp - Wu:, - Zo (18a)
e (b5 t)
Ml.a:l + Mlmlaal = -[Fvg( Zf) + mu'z'fjgl . (180v)
J
and
\
Mo.a..o = -(Fvs + ZO) (198')
My&y + Myay2ag = —(Fvs + Wu)g 10 (t > tp) (19b)
myZy + Fvg( zy) = Fyg + Wy (19e)
J

2In. a dynsmic analysis, stresses in the structure due to excitation
of the higher modes can be approximeted by calculating the response of
such modes, individually, to the forcing function determined for the
landing gear coupled with the rigid-body and first deflection modes. This
procedure should be a considerable improvement over the use of. the rigide
body forcing function as s basis for response calculations in cases where
the landing-gear attachment points experlence appreciable deflections
relative to the mass center of the system.
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where

zp = 8g + 8183

muEﬂr + Fvé<zf7) = Pg, COS 0+ Wy (t = t¢)

The solution of equations (18) and the determination of the condi-
tions at the time +tr when the shock strut begins to deflect, which
serve as the Iinitisl conditions for equations (19), are treated in appen-~
dix A. With these initial conditions, equations (19) may be solved by
numerical integration or analog methods.

From the time-hilstory solutions for the motions of the system thus
obtained, the asccelerstions and inertia loads at any point in the strue-
ture can be calculated from the equations presented in appendix B.

Equivalent Three-Mass System

It is of interest to note that the equations of motion previocusly
presented not only represent the distributed system of the alrplane but
can also be used to define equivalent systems of spring-connected masses,
vhere the number of masses gbove the landing gear is equal to the number
of modes consldered. For the partlcular case where two modes are con-
sidered the equivalent system is one containing three masses, one of
which is the unsprung masss of the landing gear. The use of such a three-
mass system provides a relatively simple means for simulsting the primery
effects of structural flexiblility in actual drop tests of landing gears
in a drop-test jig.

In the equivalent three-mass system (see fig. 3), mp represents
the mass to which the landing gear 1s directly attached and mg is the
elastically connected mass. The dlsplacement of my relative to its

position at the Instant of initial contact is denoted by zg; the dis-
placement of mg 1s designated =2zg, whereas the displacement of the
axle or unsprung mess m, is 2z,. The spring constant of the elastic
member is denoted by k. Separate lift forces ILg and Ly will be

considered to act on the maesses mg and mgp.

In order that the three-mass system represents the airplane properly,
Zfy 2y Dy, and, of course, the landing-gear characteristice must be the
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same for the two systems so that the landing-gear force is the same; and
mp, mg, k, and the applied lift forces must be determined from the

relationships between the equations of motion for the three-mass system
and the equations of motion for the alrplane.

Consideration of the forces acting on each mass as a free body (see
fig. 3) leads to the following equations of motion for the three-mass
system:

Prior to beginning of shock-strut deflection:

(me + my)zp - k(zg - 2g) + Lp = (Wp + Wy) = ~Fyg(ze) (20s)
(t & tr)
mgis + (me + my)ir + (Ig + Ie) - (Vg + We + Wy) = -Fy_(z¢) (20b)
where
myu¥e. + EVS(ZfT) = Pa,fa co8 6 + Wy (t = tq)

Subsequent to beginning of shock-strut deflection:

-~

mf'z:f - k(zg - zp) + Ly - Wr = -Fyg (21a)
mpZy + mgZg + (Lg + Lp) = (W + We) = ~Fyg | (t > t7) (21b)
myZy + Fyy(z) = Py + Wy ) (21c)

The problem is to determine the relationships between mg, mpe, Kk,
Ls, and Ly for the airplane so that equations (20) are equivalent to
equations (18) and equations (21) are equivalent to equations (19) with

the requirement that the motions of the landing gear in the three-mass
system be the same as for the alrplane, that 1s,

zZp = 89 + 8981

and that z; be the same in both systems. Since equations (19c) and (2lc)

are ldentical, they need not be considered further in evaluating the
unknown constants for the three-mass system.
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It is spparent that equations (20a) and (20b) as well as equations (2la)
and (21b) can be written as

meze - k(zg = 2zp) + Lp -~ Wp = «F (22a)
meZe + MgZg + (L§ + Lg) - (Wg + Wg) = «F | (22b)
where
F = ?vg(zu) +_mu2u - Wy
and

Zy = Zf (t € 1)

2y ¥ Zf (t > t7)

Similarly, equations (18a) and (18b) and equations (19a) and (19b)
can he wrltten as

Mogg + Zg = =F (232)
1iii":,_+b—/[3--ml2zat:,_+Wu= ~F (2%b)
gy E1

Thus, the problem is reduced to determining the constants for the
three-mess system so as to make equations (22) identically equivalent
to equations (23). This may be done in any of several different ways.
For example, since the structure is teken asg linear, let

2g = &g + a1 p

wvhere B 1s a constant to be determined. Substituting for zy and zg
in equations (22a) and (22b) and eliminating &, between these equations

gives
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me(Ey - B)ay + %gl - B)(mp + mg)ay + Ly - Wp + Z‘—f(ws -Lg) = -F (2%

whereas, subtracting equation (22a) from equation (22b), with the same
substitutions, gives

o P L
B+ BHy + (B - ta)ap + = - =0 (25)

Equation (24) is directly comparable with equation (23b). Combining
equations (23a) and (23b) so as to eliminate F and to make the coeffi-
cient of Hp equal to unity gives the following equation with which
equation (25) may be directly compared:

2

v My .. M - W

ao - l al - lml al + ﬁ._u: = O (26)
Mo Mo Mo

In order to evaluate the constants for the three-mass system, each
term in equations (2%4) and (25) is set equal to the corresponding term
in equations (23b) ard (26), respectively, the constants in each equa~-
tion being considered as a single term. This procedure glves six simul-
taneous equatlons, the solution of which ylelds the followlng expressions
for the congtants in the three-mass system:

mg + me = Mg (1)
Lg 4+ Lr = Mog + Zy (28)
il 2
e My + M2 ( )

- 2
My + Moty
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2
ms _ Jobs (51)
mp My
£ 2
My + MoEy
2
E - W
Lo = 081 (20 2u) + Wy (33)
My + Moty
and
MyZg + B“o“'uﬁl2
My + Moty
where
My
B=-— (35)
Mo€a
and.
WpZp + MgZg = MOaO (36)

With the foregoing substitutions, equations (22) are identically
equivalent to equations (23); thus, the three-masss system with the speci-
fied values of mg, mp, k, Lg, and Ly can be considered to be equiv-
alent to the alrplene in its first two modes during both the first and
second stages of the impact. Equations (27) and (28) are required to
satisfy the equations of motion for the airplane as a rigid body, whereas
equations (29) to (34) are required for proper represenmtetion of the alr-
plane in its first f£flexible mode. With this approach the struetural prop-
erties of the alrplene are defined by three parameters: the total mass
sbove the landing gear Mg, the mass ratio ms/mf, and. the natural fre-

quency ay.



NACA TN 3467 25

The solution of the equations of motlon during the first phase of
the impect and the determination of the conditions at the instant of
initial shock-strut deflection t+ are treated ln appendix A. With
these conditions as initial conditions, the equations of motion for the
second phase of the lmpact can be solved by numerical-integration or
analog methods. From the time-history solutions for the motion of the
three-mass system, the inertia loads and bending moments et any point in
the airplane structure can be calculated by use of the equations in
appendix B.

Solution of Equations of Motion

In view of the fact that the equations of motion subsequent to
time +tr are highly nonlinear and therefore cannot be solved in closed
form, it is necessary to resort to numericel-integration or esnalog methods.
Various numerical-integration procedures are given in references 11 to 13.
Appendix A of reference 6 illustrates the application of several such
methods to the problem of the impact of a lending gear attached to a rigid
mass. One of these methods, which may be termed the "quadratic procedure,”
was used to obtain those numerlcal results presented in this paper which
could not be obtained analyticalily.

In this procedure, which involves a step-by-step solution of the
equations of motion, the following difference equations (ref. 11, p. 16)
based on a quadratic variation of displacement over successive finite

time intervaels are used to replace the derivatives in the equations of
motion:

s REil - Ap-1
i Dl

and

= ?\P'l‘l - 27\P + ?\p_l
(a6)

where RP 1s the value of any varilable at the end of the pth interval

subsequent to the beginning of the process and At is the time interval.
The difference equations of motlon obtained by substituting these expres-
sions into the differential equations of the system then become essentially
extrapolation formulas which permit calculation of the displacements to
come from the values of displacement already calculsted, the whole pro-
cedure starting out with the initlial conditions of the process. With
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the displacement time historles thus caleculated, the velocities and
accelerations are then determined from the foregoing difference equations.

CALCULATED RESULTS AND DISCUSSION

Cases Considered

In order to investigate the effects of structural flexibility on
the behavior of the landing gear and the loads in the airframe, several
case~history studles are presented which cover a range of airplane mass
ratios mg/my. The calculations are based on the structural properties

of two large airplanes having considerably different mass and flexibility
charscteristies. Airplane A is representative of a four-engine propelier-
driven World War II bomber having s gross weight of 47,200 pounds and

a natural frequency of wvibration in the first coupled bending-torsion
mode of 3.37 cycles per second. The structural characteristics used for
airplane B are representative of a present-day swept-wing six-Jet-~-engine
bomber having a gross weight of 125,000 pounds and a natural frequency

of 1.29 cycles per second in the first coupled bending-torslon mode. The
landing-gear characteristics used for airplane A were based on the man-
ufacturer's data, whereas, for airplane B because informstion was not
avellable, the shock~strut characteristics were chosen so as to yleld a
landing gear which is essentislly & scaled-up model of the landing gear
of airplane A. The pertinent numerical data for airplanes A and B are
glven in tebles I and II, respectively; the modsl functions for the first
coupled bending-torsion mode are plotted in figure k.

The main landing gears of airplane A were located in the Iinboard
engine nacelles very close to the nodes of the first coupled bending-
torsion mode; in the case of sirplane B the landing gear 1s of the blcycle
‘type and is located in the airplane center plane. The position of the
landing gear (since it determines the value of the modal amplitude gl)

in conjunction with the values of Mo and M3 governs the value of the
mass ratio mﬂ/mf for each case. (See eq. (31).)

In order to represent a broader range of mess and flexibillity effects,
the calculations for each alrplane were made for four mass ratios corre-
‘sponding to three arbiltrary landing-gear positions in addition to the
original landing-gear location. In practice, of course, a change in
landing-gear location would probebly necessitate a modification of the
wing structure and result in some change in the modsl characteristics
and., thus, the mass ratlo. The main purpose of the calculations, how-
ever, 1s to indicate the effect of mass ratio on the behavior of the
gystem, and the exact locations of the lending gear whlch correspond to
the mass ratios used are of secondary interest.
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In the calculation of the mass retio ms/mf, the landing-gear force

wag assumed to pass through the mass center of the landing-gear station.
Since the modal characteristics used were for the complete airplane
including the unsprung mass of the landing gear my;, it was assumed that

the unsprung mass was rigidly connected to the mass mp in the equivalent
three-mass system, as I1n the first phase of the impact, so that

2
mg __ Moby
me +my, My

where My, M;, and ;l ineclude the effects of the unsprung msss as

part of the ailrplane mass distribution. The mass ratios considered and
the corresponding landing-gear locatlons are as follows:

Alrplane A Alrplane B
Landing-gear Mass ratio, Landing-gesr Mass ratio,
location at - mgmf location at - ms/mf

Station O 0.24 Station O 0.22
Nodes 0] Nodes 0

Station 245 .52 Station 420 .85
Station 307 3.33 Station 504 2.84

When the landing gear 1s located at the node of the first flexible
mode, this mode, of course, is not excited and, since higher modes are
not considered in the numerical calculations, the airplsne behaves as
though it were a rigid body, its motion being governed by equation (23a).
As might be expected, the farther awey the landing gear is from the nodes,
the larger is the effective flexibility of the system and, thus, the mass
ratio.

In the calculation of the time histories of the motions of the system,

the 1lift force was assumed to be constant during the impact and equal to
the total weight of the airplene, that is,

b/2
fo Ldy=Mg+W
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so that

2o = Wy

This assumption corresponds to the condltion that

in the equivelent three-mass systemn.

On the basis of the calculations in reference 6, the shock-strut
orifice discharge coefficient Cg was assured as 0.9 and the polytrople
exponent n for the alr-compression process was taken as l.12.

Effect of Interaction on Behavior of System

Time-history solutions for the motions of the system during impact
at an initial vertical velocity of 10 feet per second have been made for
the eight configurations previously mentioned. Figures 5 to 8 show the
veriation during impact of the more importent quantities, such as the
landing~-gear force F, the responses &pfg, El/g, Ef/g, Es/g, the
landing-gear-motion verisbles, and the accelerations at the mass centers
of several stations along the span. Comperison of the calculated results
for the flexible cases wlth those for the airplane as & rigid body (or
landing gear at nodes, mﬁlmf = 0) indicates that the interaction between

the flexible structure and the landing geer can result in an apprecisble
reduction in the applied landing-gear force (and thus, the nodal accelera-
tion), the largest reductions occurring at the highest mass ratios. Fur-
thermore, the reductions in landing-gear force at the higher mass ratios
are greater for airplane B, because of its lower natural frequency, than
for airplane A.

Conslderation of the calculated time histories of the motion of the
landing gear indicetes how the interaction between the flexible structure
gnd the landing.gear affects the loads produced in the' landing gear.
Because of the flexibility of the structure, the landing-gear attachment
point deflects upward relative to the nodes, or instanteneous center of
mass of the system, as the applied force builds up and the deceleration
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of the landing-gear attachment point ls greater than in the case of the
rigid airplane. Thus, the downward velocity of the shock-strut outer
cylinder is more rapldly dissipated and the displacement of the outer
cylinder is smaller throughout most of the impact. The tire deflection

is also smaller; however, because of the high stiffness of the tire, the
decresse in tire deflection is smaller than the decrease in ouber-cylinder
displacement. The net result is & reduction in strut stroke during that
part of the impact when the meximum force occurs and an accompanylng
reduction in the strut telescoping velocity. Since the maximum landing-
gear force is primerily due to the hydraulic resistance in the strut,
because the strut stroke, and thus the air-compression force, is generally
small at the time of meximum telescoping velocity, the decrease in tel-
escopling velocity results in a decrease in shock-strut force.

In the case of airplane A with landing gear at station 307, the
effect of interaction is a marked change in the shape, as well as in the
magnitude, of the time histories. Because of the superimposed vibrations
of the structure, the shock-strut telescoping velocity (see fig. 5) has
acquired an oscillatory character with two pesks of the same amplitude.
However, since the second telescoping-velocity peak occurs when the stroke
1s large, the superposition of the high air-compression force on the
hydraulic-force results in a total-force time history the second peak of
which is much higher than the first (see F~t curves, fig. 5) and which is
also higher than might be expected from the results for the smaller mass
ratios, which have a considerably different appearsnce. In the case of
airplane B, because of the lower natural frequency, this double-peaked
characteristic does not appear even for the largest mass ratio, all mass
ratios ylelding time historles similar in shape, the maximum force
decreasing in a regular manner with increasing mass ratio.

The extent to which the first flexible modes of sirplanes A and B
are exclted by the“impacts mey be observed by examining the time histories
of &, él, and &,. As may be expected, the higher the mass ratio, the

greater is the degree of excitation.

From the calculated values of éb/g and El/g or Ef/g and Es/g,
the acceleration at any point along the span may be computed by means of
the equations in appendix B. Figures 6 and 8 show time histories of the
acceleration at the mass centers of several stations for each of the
landing-gear locations considered. Because of the combined effects of
the changes 1n the landing-gear forcing function and in the degree of
excltation of the flexible modes, a given change in landing-gear location
may result In an increase in acceleration at some stations and a reduc-
tion in acceleration st other stations.

Flgures 5 and 7 also show time histories of the acceleration Es/g
which would be experienced by the elastically connected mess mg in the
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equivalent three-~mass system, as 1n a drop test. The reduction in
acceleration with increasing mass ratio is evident. As previously indi-
cated, 1f such a drop test were made, the measured accelerations Eﬁ/g

and Es/g could be used to calculate the acceleratlons and stresses
that would result at any polnt in the corresponding airplane structure
by means of the equations presented in eppendix B.

Figure 9(a) presents & summary greph showing the effects of struc-
tural flexibility and Iinteraction on the meximum landing-gear force for
the various configurations considered. As previously indicated, the
reductions in landing-gear forece are greater for airplane B than for
alrplane A because of the lower natural frequency .of the former airplane.
For the range of mass ratios representative of exlsting and proposed
large alrplanes, for example, values up to about 0.5, reductions in
lending-gear force up to between 15 and 20 percent msy be possible.
Along the same lines, figure 9(b) shows the effects of interaction on
the acceleration response of the landing-gear attachment point and on
the acceleration of the elastically connected mass 1n the equivalent
three-mass system.

Effects of Neglecting Interaction in the Calculatlon

of Dynamic Losads

In the usual procedures of dynemic analysis of landing loads it is
customary to neglect the effects of interaction on the landing-geaxr
forcing function and to determine the dynamic loads in the structure by
calculating the response of the structure to the forcing function which
would be obtained if the alrplane were a rigid body, this rigid-body
forcing function belng either calculated or, more frequently, determined
on the basis of drop tests of the landing gear with a rigld mass. In
practice, either the actual rigld-body forcing function or some simplified
analytical approximation of it (see, for example, fig. 10) is used.

In order to evaluate the errors introduced by neglect of interaction
effects, the root bending moments and shears determined from the inter-
action solutions for airplanes A and B are compared in figures 11l and 12
with those determined by calculating the response of the varlous configura-
tlons to the rigid-body foreing functions previously presented and to
simple enalyticel approximetions to the rigid-body foreing functions.
These bending moments and shears are total values due to both inertia
and aerodynamic forces, the latter being included to permit comparison
with the steady-flight values. TFor reference purposes, figures 11 and 12
also show the root bending moments end shears which would be experienced
by & completely rigid alrplane. '

The calculation of the response of systems with two degrees of free-
dom to predescribed foreing functions 1s treated in eppendix C. The
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response of the various configuratlions to the rigid-body forecing function
was calculated by application of the mmerical-integration procedure pre-
viously described, whereas the response to the analytical forcing functions
was obtained in closed form. The rigid-body foreing functions for air-
planes A and B and their spproximations sre shown in figure 10. In the
case of airplane A, the rigid-body forcing function was approximated by
& pulse composed of sine and cosine segments; for airplane B, a simple
sine pulse was used. The equations for calculating the inertia moments
and shears from the response of the system are glven in appendix C;
simplified expressions for calculating the moments and shears due to the
aerodynamic forces are given 1n appendix D.

From figures 11 and 12 1t can be seen that the bending moments and
shears calculated from the response to the rigld-body forcing function
are larger than those determined from the interaction solutions, the
differences being greater for the higher mass ratios where the effects
of interaction result in a greater reduction in the msgnitude of the
lending-gear forcing function. From these particuler examples, it appears
that neglect of the effects of interaction on the landing-gear Fforcing
function can lead to overconservatism in design not only of the landing
gear but also of the structure, particularly for very flexible configura-
tions with high mass ratios. As might be expected, there was relatively
1little difference in the loads calculated from the response to the analyt-
ical approximations and from the response to the rigid-body forecing
funection.

It is of interest to note that in the case of airplsne A the loads
calculated from the interaction solutions are greater than those caleculated
for the completely rigld airplane, whereas, for airplane B, the converse
is true. This result for alrplane B is due to two factors: (a) the
dynamic amplification factor is less than unity because of the relatively
large natural period of the airplane compared with the duration of the
impact pulse (ti/tn,z 0.3), and (b) there is considerable reduction in
the magnitude of the landing-gear force because of the effects of inter-
action. In the case of airplane B, the natural period is of sgbout the
same durstion as the impact pulse (ti/tn== 1.1) so that the dynamic masgni-
fication factor is considerably greater than uvnity and more than overcomes
the effect of the reduction in landing-geasr force.

From the preceding results, it can be seen that the effects of struc-
tural flexibility are twofold; namely, (a) a change in the magnitude of
the epplied landing-gear force due to interaction, the amount depending
on the natural frequency of the structure, the mass ratio mB/mf, and the

landing-gear characteristics, and (b) either dynamic smplification or
attenuation of the loads in the structure compared with those for a rigid
body, depending largely on the ratio of the duration of the impact pulse
to the natural period of the structure. In the particular examples con-
sidered, the landing-gear force was reduced by the effects of interaction;
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it is concelveble, however, that, for some combinations of landing-gear
and airplane characteristics, perhsps when the naturel period of the struc-
ture 1s smaller than the duration of the impact pulse and the mass ratio

is large, interaction may result in an increase in the meximum landing-
gear force over that for a rigld airplane because of the superposition

of oscillations of the landing-gear attachment point on the motlions of

the shock strut. Such an unfavorable effect of structural flexibillity

on ‘the applied force was indicated for certaln cases of seaplane impact

in reference 7.

In view of the foregoing observatlons it would appear worthwhile
to consider the effects of interaction in dynemic analyses of landing
loads when the landing gear 1s located at polnts in the airplane that
experlience appreciable deflections relative to the mass center of the
system.

CONCLUSIONS

The effects of interaction between a landing geasr and a flexible
alrplane structure on the behavior of the landing gear and the loads in
the structure have been studied by treating the equations of motion of
the alrplane and the landing gear as a coupled system. The landing gear
is considered to have nonlinear characteristics typilcal of conventional
gears, namely, veloclby-squared damping, polytropic air-compression
springing, and exponential tire forge-deflection characteristics. For
the case where only two modes of the structure are considered, an equiv-
alent three-mass system is derived for representing the airplane and
landing-gear combination, which maey be used to simulate the effects of
gstructural flexibility in Jjlg drop tests of lending gears.

As examples to illustrate the effects of interaction, numerical
calculations, based on the structural properties of two large airplanes
having considerebly different mass and flexibility characteristicse, are
presented. In order to cover s range of parameters, the landing gear
of each airplane was assumed to be located at three arbitrary spanwise
positions in addition to its original location. For the particular cases
considered, it was found that

1. The effects of interaction can result in apprecilable reductions
in the magnitude of the landing-gear force, particularliy when the flexi-
bility of the alrplane structure is large and the netural frequency of
the structure is small. .

2. Neglect of interactlion effects, that is, the use of the landing-
gear forcing function for a rigld alrplane in a dynamlc analysis of a
flexible sirplane, can lead to the calculation of excessive loads 1n the
alrplane structure.
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3. In the case of one of the airplanes, the structural loads cal-
culated from the interaction solutions are greater than those for a com-
pletely rigid airplane treatment (rigid structure subjected to rigid-
body forcing function) because of the fact that the effects of dynamic
magnification more than overcome the reduction in landing-gear forece due
to interaction. In the case of the second airplane, because of the rela-
tively large natural perlod of the structure in comparison with the dura-
tion of the impact pulse, the dynamic magnification factor is apprecisbly
less than unity. This effect, coupled with the reductions in landing-
gear force due to interaction, results in structural loads that are less
than those for a rigid airplane.

It thus appears desirable to conslder the effects of interaction in
dynamic analyses of landing loads for large asirplenes, particularly when
the landing-gear atbtachment points experience large deflectlions relative
to the mass center of the airplane.

Langley Aeronautical Laborstory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 5, 1955.
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APPENDIX A
CONDITIONS AT BEGINNING OF SHOCK-STRUT MOTION

Since the shock strut does not begin to deflect until the pre-
loading force imposed by the internal air pressure is overcome by the
inertia forces, the shock strut is essentially rigid during the interval
between the instant of initial contact with the ground and the beginning
of shock-strut motion at some time +t = t4. During this interval, since

the deflection of the tire is essentlally the same as the displacement
of the landing-gear attachment point, the system used in the numerical
calculatlons to represent the alrplane and landing-gear combination has
only two degrees of freedom, namely, the rigid-body or zero-mode displace-
ment and the deflection in the first flexible mode, the higher modes
being neglected. The purpose of thils appendix is to consider the motlons
of the system prior to the beginning of shock-strut deflection in order
to determine the conditions which exist at the instant the shock strut
first begins to move; these motions then serve as the initlal conditions
for the equations of motion of the system during the main part of the
impact. For thls purpose it may be reasonably assumed that the tire
force-deflection relationship is linear for the relatively small range
of deflection prior to the begimning of shock-strut motion and that,
therefore, Fvg(zf) = m'zpe. In order to avoid a step jump in the time-

history solution at the time %;, the constant m' should be determined
so that

T
m'sz = mzp (41)

Distributed System

Prior to time +t; the equations of motion for the airplane and
landing gear are given by equations (18) with initisl conditions:

z¢(0) = ag(0) = 87(0) = O
20(0) = 85(0) = V¥,
8,(0) = 0
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Doy -
Since & = f__f'_(_)_, equations (18) can be written as

£1
Mpgg = «m'zp « myZe + Wy = Z0 (A22)
2 2
My . M M . M
-l-a0+ 17 ag = —J—'-+mu2f+ £ S Zp (4A2b)
E12 £;2 €12 E1

The exact solution of equations (A2) can be shown to be

2 2
zo(t) = —2— vy (E2=C sin at - B2 2C gin Be) +
£ a2_p2| °\ a .
2 _ 42 2 _ g2
- A - B
le—cosA:b-wl—cosB‘b+a.\lai--i) (a3)
A2 B2 BS A2
where

A___\/E -\}Ea- LF
2

B=\/E+\/E2-)+F
2

Myan2(Mg + my)
- @G

C =

Ml(wu - ZO)
G
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m'Myan 2
G

F =

G = My (Mg + my) + mMotq”

By successive differentiation of equation (A3), the higher deriva-
tives of zp(t) are found to be

zp(t) = e vvo[(pﬁ - C)ecos At - (B2 -~ C)cos Bt] +
- ()
D ||————]gin Bt = | ————}sin At (AY%)
T B A
Zo(t) = S = S {VVO[B(BQ - C)sin Bt - A(A2 -~ C)sin At] +
A= -
D li(mf - 32) cos Bt - (a2 - A2)cos At:]] (85)
2p(t) = T {Vvo I:BE(B2 - C)cos Bt - AZ(A2 - C)cos At:l +

DH@J@ - A2) sin At - B(w12 - 32) sin Bt:l} (46)
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At the time 44, the equation of motion of the unsprung mass of the

landing gear as a free body is given by equation (2) which, with
Fyg = m'zp, may be written as

myZg, + W'Zg_ = Da Ag €08 6 + Wy (A7)

Substituting for ze and 'z'f_r in equetion (AT) glves a relation-
ship between tr and m':

1 A2 - ¢ 32 -c i
<= W, | =" - myA?)sin At - ———(m' - myB)sin Bt| +

w2 - A2 w2 - B2
D —2——(m' - myA2)cos At - —2—-—(m' - m;B2)cos Bt +
A B
v o 2f 1 1
end = o
m' (B S A2) Pa.oAa. cos 6 + W, (A8)

Because equation (A8) is transcendental in both +t; and m'

(m' being involved in the constants A end B}, in order to obtain an
explieit solution for +r or m', some approximstion to the trigonometric
terms is necessary, the order of the approximation depending on the accu-
racy required. For the determination of t; and m' it will generally
be sufficient to assume first-order approximations for the trigonometric
terms where only the first terms of their series expansions are used.
With these approximetions the solution of equation (A8) for +t is

G PaoAa cos 8 + W, - Dnu)
m'MlMoVVO

(49)

b =

As indicated previously, m' cannot be chosen arbitrarily but must be
determined in accordance with equation (Al), which msy be written as

r-1
n' = mzp.
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The first-order approximstion for zg ? obtained from equation (A3),
is

Zpp = Vy br (a10)

With these substitutions equation (A9) may be written as

‘ 1/r
N G(PaoAa cos 8 + Wy ~ Dmu)_l

Tr = (A11)
Vv, MMy |
and the equation for m' becomes
r-l
1/r G(Paer. cos O + Wy - Duu)" i
m' =m (a12)

M3Mo _l

The first-order approximations for the derivatives of zp at time
tr, from equations (A4) to (A6), are

éfT = VVO + Dty (-A-l3)
g, = Vg, |C - (A2 + B2)]%r + D (a14)

and
‘T = vvo[c - (A2 4 B2ﬂ + tTDE)f - (A2 + B2ﬂ (A15)

With the values of tr and m' caleculasted from equations (All)
and (A12), the values of zp = 2., Zf. = 2y, and Zp = E, can be
calculated from equations (A10), (Al3), and (Alk), respectively. These

values provide two-thirds of the initial conditions for the process sub-
sequent to the beginning of shock-strut deflection (eq. 19). The
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remaining initlal conditions, for example, 8071 é,OT, and 'éoT, can be

obtained by manipulation of the differential equations (A2). From equa~
tion. (AZb) it can be seen that

2 2

.2 |fM M M

80, = —=— 5 /——l +my |2 + 1 ' L. 4 (416)
My \512 €12 £,2

By differentiatlon,

£-2 |/M M 2 M
. 1 1 197 ) 1 (A17)
2 aOT
Myan=[\&1 €1 €1

%0,

where, from equation (A2a),

) m'sz + mu'z'fT - W, + Zg
301_ = -
Mo
¢ (a18)
pao cos 6 + Z
Mo -
Differentiating equation (A2a) gives
m'z 'z,
£+ H2e
[N ] = - T T (Al9)

T

Mo

The substitution of equations (A18) and (A19) and the initial con-
ditions previously determined (zf » 2o, ¥p , and sz) into equa-
T T T

tions (A16) to (A18) provides the remaining initial conditions for the
second phase of the lmpact.
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Equivalent Three-Mass System

The equations of motion for the equivalent three-mass system prior
to the time +t+ are equations (20) with initial conditions

]
o

Zf(o) Zs(o)

]
i

zp(0) = zg(0) = Vy

o

Since it has been shown that equations (20) are identically equiv-
alent to equations (18) for the distributed system when the relationships
between the constants of the two systems are as defined by equations (27)
to (34), it follows that equations (A3) to (Al5) are equally valid for
the three-mass system when the constants are redefined in accordance
with equations (27) to (34). The redefined constants, in terms of the
properties of the three-mass system, msy be written as

_ men B(Mo + my)

c
Mo(me + my)
b o Relily - %)
Mo(me + my)
Ee B 40
me 4 My
) mfmla-)l.?.
Mo(me + my)

where
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and
o =\ |0
Mg
The equations for +, and m', equations (All) and (Al2), become
o l/r
1 (B P fa COB 6 + W, - Dmu)
tr = (A20)
VV m
OL-
where
+
¥ - Mp + My
me
and
r-l
T
mn' = ml/r[H(paoAa cog O W'Ll - Dmu):l (A21)

The values of tr and m' given by these equations permit the
calculation of zp_ = z,, éfT = ﬁuT, end Zp = EUT by means of equa-

tions (A10), (Al13), and (Alk). The remaining initial conditions for the
second phase of the impact, zg and its derivatives at the time +t,

can be obtained by manipulstion of the differential equations (20).
Solving equation (20a) for zg at time +t; gives

Zgr = %[(mf +my)de + (k+m')ze_ + Le + Wp - wu] (A22)

Differentiating equation (20a) and substituting Fvg(zf) = m'zf glves

o, = X [(mf +m)ip 4+ (k - w )éfT] (a23)
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An expression for 'is.l. can easily be obtained from equation (20b)
as follows:

Fgy = - 1%—-sl:(mf + mu)'z'f_r + m'sz + (Lg + Lg) -~ (Wg + Wp + Wu)] (A2kh)

Equations (A22) to (A24), in conjunction with the values of ZE s
éf-r s and ‘z'fT previously determined, supply all the initial conditions

for the second phase of the impact of the equivalent three-mass system.
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APPENDIX B
DYNAMIC IOADS IN AIRPLANE STRUCTURE

The equations of motion of the airplane have been previously pre-
sented in several forms so that solutions for the motlons of the struc-
ture can be obtained in terms of the variables ap =and a3, 8y and zp,

or zp and 3z5. The purpose of this section is to present eguations

from which the accelerations, bending moments, and shears at any point
on the airplane structure cen be calculeted once the time-history solutions

for the basic varlables have been obtained.
Acceleration

At any point.- The absolute displacement at any point on the struc-
ture (see fig. 2} is

Z =W+ XP

Since

W=30+8.1Wl

and

¢ = a1y

where w; and @7 are the model functions for bending and torsion,
respectively,

z = ag + aj(w; + xp7)

and.

By + #y(wy + x,) (B1)

N2
li



Iy NACA TN 3467

Since

Zp - &g
1

8y =
the acceleration at any polnt msy also be writien as

Wy + XPy

z = 8y + (Zp - Hp) (B2)
g1
Since, from equation (36)
_ meEp + Mgig

the acceleration can also be written as

. 1 . . o o (W + XPy

Z = —=|mpZe + m ¥, +m (Zp - zs)-———————] (B3)

MO[ g 8“8 8 §l

Along elastic axis.- At the elastic axis, the displacement is desig-
nated w and X = O 8o that equation (Bl) becomes simply

W= go + 'a'.lwl (B}-I-)

Equation (B2) becomes

w (¥
Ww=8y + (2¢ - ao)gi (B5)

Equation (B3) becomes

W= JL-mef + mg% + mg(Ze - Es)zl (B6)
Mo €1
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Along statlon mass centers.- At the mass center of any station the
displacement is designated § and x = € so that equation (Bl) becomes

t = gg + 818 (BT7)

where ;l is the modal function for the station mass centers and is
equal to wy + epj. Equation (B2) becomes

[Van 24

= &8 + (Zp - ao) (B8)
£1

Equation (B3) becomes

t= ;%'mfif + mgZg + mg(Zzp - ES)E% (B9)

Bending Moments
Outboard of landing gear.- The bending moment at any spanwise sta-

tion Y3 outboard of the landing-gear station Vg is readily determined

by summing up the inertia moments produced by the accelerations of the
mass centers of all stations i between station Yy and the tip. Thus,

(BM)iny :E: miCi(Yi - YJ) (B10)

Inboard of landing gear.- The bending moment at any spanwise sta-
tion Y3 inboard of the landing-gear station Yg is equal to the sum

of the inertia momente produced by the accelerations of the mass centers
of all stations 1 between station ¥j and the tip plus the moment

produced by the landing-gear force. Thus,
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tip ..
(B, oy = 2 my83(y1 - vy + Flyg - v3) (B11)
=g i=j
Inasmuch as
F = - (Moo + %)

equation (Bll) cen also be written as

t4
(BM)YJ§Wg = %E? m1§i(¥1 - YJ) - (MgEg + ZO)(yg - YJ) (B12)

Shears

Qutboard of landing gear.- The vertical shear at any spanwlse sta-
tion ¥y outboard of the landing-gear station Vg is simply the sum

of the inertia reactions due to the accelerations of the mass centers
of all stations 1 between statlon yj and the tip. Thus,

tip ..

Sy = Somby | (B13)
ngyg = is1

Inboard of landing gear.- The vertical shear at any spanwise sta-
tion Y3 inboard of the landing-gear station Vg is the sum of the

inertia reactions due to the accelerations of the mess centers of all
stations 1 between station Y3 and the tip plus the landing-gear

force. Thus,

tip .,
Sngyg = ;szmi;i + F
tip |,
> myby - (Mgdg + Zg) (B1h4)
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APPENDIX C
RESPONSE TO GIVEN FORCING FUNCTIONS

Tn this appendix equations are presented for the acceleration response
of the airplane structure to predetermined forcing functions applied by
the landing gear. The cases considered are the arbitrary forecing function,
the sine pulse, and a pulse made up of sine and cosine segments. For the
particular case where the landing-gear forcing function can be represented
by a single sine pulse,

F(t) = Fpoy 8in Qt

where § 1s the circular frequency of the applied sine pulse and is
expressed by .

M=

where T is the time to reach Fygx.

If the forcing pulse is not symmetrical in time about its maximum
value, it msy be represented by & combined pulse consisting of a sine
function up to the time T and a cosine function subsequent to the
time T. This latter function may be written as :

F(t') = Fypgy cos Q1t' t' 20

where

t'=+t -T

and Q3 is the circular frequency of the cosine pulse; the initial con-
ditions are the same as the conditions st the time + =T dJdetermined
from the response to the sine-funcition segment of the pulse.
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The solutions are presented for the distributed system of the air-
plane (sketch a) and for the equivalent concentrated-mass system (sketch Db)

LN AVAVAV NS
b

F(t) F(t)

IF(t)

(a) Distributed system. (b) Concentrated-mass system.

Distributed System

The acceleration response of the rigld body or zero mode is immedi-
ately evident from the equation of motion for n = O, namely,

F(t) + Zo
Mo

The response of the deflection modes follows.

Arbitrary forcing function.~- When the landing-gesr forcing function
is predetermined and arbitrary, the equation of motion for the nth mode
(eq. (15a)) can be written as

Mntn + Mn&hzan = - [F(t) + WéIEn (F # 0) (c1)

where F(t) 1s an arbitrary function of time and ay, 18 the generalized
coordinate of the nth mode.

-
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The general solution of equation (C1l) may be written as

t W,
an(t) = - tn f F(7)sin wy(t ~ T)dT + lgn—(cos ot - 1) +
Mn‘Dn 0 Mn%a
an(0)cos w,t + a—'f:)l(l—o—)- sin wut (c2)

The acceleration response is obtained by double differentiating equa-
tion (C2) as follows:

| t
an(t) = En (L) - a.)nf F(7)sin a,(t - T)dT + Wy cos ept| -
Mp o

an(0)an2cos et - 8,(0)wy, sin wpt (c3)

Equations (C2) and (C3) are general solutions to equation (Cl) and thus
represent the response of any mode to an arbltrary forcing function F(t).
In the present study of landing impasct, the initial conditions are

an(0) = 0

and.

&n(0) = 0

Sine-pulse foreing function.- For the particular case where the
forcing function is a sine pulse, the acceleration response, as deter-
mined from equation (C3), is

Mn|g2 - o 2

8n(t) = Fpax EE{—QQ——(Q sin ant - apn sin Qt) ~ sin Qt] -
- ay

- (Eﬁ_.@_n_ + an(O)a.)nz) cos wyt - ap(0)ay, sin apt (ch)
n

where, again, ap(0) = 0 and &,(0) = O.
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Half-slne—half-cosine pulse.- In this case the response up to
time T 1is given by equation (Ck). Subsequent to time T +the accelera-
tion response, determined from equation (C3) , may be written as

2
an(t') = Fuax 59- —2ah;-—2(cos wpt' - cos Q1t') - cos Q3t'| -
MniQ1= - an
Wugn 2 t - t
o+ en(0)an|cos wpt’ - &n(0)ay sin ant (c5)
n
where
t'=(t-T) 21

a.n(O) = a-nT
é'IJ.(O) = énT

Equivalent Concentrated-Mass System
The equations of motion for the concentrated-mass system subject to

an arbitrary forcing function are (see egs. (22))

meze - k(zg - 2£) + Le - We = - F(t)
> (c6)
meze + mgZg + (Le + Lg) - (Wg + We) = - F(t)

]
Introducing the new variable
U= zg - Zf

permits the combination of equatlons (C6) into a single equation in one
variable:
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g

mell + k(l + m—£>u =Ft) +J (c)
where

J=Lf-wf-z—:(Ls‘-ws)

The solution of equation (CT), by analogy with equation (Cl), can
be written .as

(%) = x ftF('r)sin ('b-T)d.T+-—J—(l cos o b) +
* —E ) “1 27 T “1

mpan
u(O)cos ant + E&Ql sin oyt (c8)
@
where
Mo
2y 2
@ =k

By substituting w(t) for zg - zp in equations (C6) and combining,
the following equations for the responses %Zg and %p can be obtained:

t
p BN 3 N - J -
zg(t) = Bg |Tpen L[O F(t)sin an(t - T)dr + m—fa?(l cos ant) +

u(0)cos awyt + {’"Jm-lQl sin ayt| + Hs - Ls (c9)

g
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and

Zp(t) = == -F(t)+(I:. - W) +katF(r)sina>_L(t-r)d~r+
o me | £o meay Jo

#l - cos ayt) + u(0)cos wyt + % sin wlt:] (c10)

In equations (C9) and (C10), u(0) = 2(0) = O for the present
application to landing impact. _ .

Sine-pulse forcing function.- For the case where the forcing term
is a sine pulse, equations (C9) and (C1l0) become

" (t)_____LFme(n sinwlt—wlsinﬂt)+ I
s 2

2(1 - cos wt) +

mfwl(ﬂ - <D12) My

. " . .
u(O) gin tnl'b + 8 g
Mg

u(0) cos ot + (c11)

‘zp(t) = ﬁ]:%- Fmax|:k(Q sin wlte- s Zin as) - sin m—} - (Ly - Wp) +
L el -

Jk(1 - cos ant)
meay 2

u(0)

+ kl}t(o)cos ot + sin wl't{| (c12)

where, again, u(0) = u(0) = O.
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25

Half-sine-~half-cosine pulse.~ The responsé up to time T dis given

by equations (Cll) and (C12).
(egs. (C9) and (C10)) become

Subsequent to time T, the responses

1 1
ve(t!) = - £ Fmax(cos wpt’ - cos a%') = (1 - cos ant') +
me (312 - w2) mpan 2
. . u(0) . Wg - Lg
0] t + —= sl | + ——— Cl3
u(0)cos y ~ n wy o (c13)
and
. k ' - '
zf('t') = % max (cos ot 5 COZ 21 ) - cos Ql'b' - (Lf - Wf) +
mf(?l - Wy )
Jk(1 - cos ant') 2(0)
+ k [u(0)cos ant + ——= sin ant’ (c1h)
meay 2 . “1
where

t'=t-T=0

u(0) = Up

u(0) = 'I.JT
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APPENDIX D

AERODYNAMIC AND WEIGHT MOMENTS AND SHEARS

In appendix B equations were presented for the bending moments and
shears due to the combination of the inertis forces arising from the
accelerations of the masses distributed along the span and the landing-
gear force. In the calculation of the totel moments and shears, however,
conslderation must be given to the serodynamic 1ift and weight forces.
Thie appendix presents equations for estimating these aerodynamic end
weight moments and shears which, salthough only flrst approximations, are
conslidered sufficiently accurate for the purposes of the present study.

If it is essumed that the 1ift coefficlent is constant along the
span and equal to the average 11ft coefficient of the wing Cp, the 1lift

force at any station y; 1s equal to G, % ViaAi where A4 1s the area

assunted. to be concentrated at the station.

The moment at eny station Y3 due to the 1lift and welght forces at
each station 1 outboard of station ¥y is

tip i :
(Ma)y, = 0L E W2 S5 milyy - vy) - ¢ f my(y1 - ¥3) (D1)
. 2 7 i =3

If unsteady-state 1ift effects are neglected, the instantaneous 1lift coef-
ficlent is related to the 1lift coefficlent at the instant of initisl con-

tact by the expression

Cp = Opg + Cr (7 = %)

A
o * el

Inasmuch as the total 1ift at the instant of contact is

b/2
JF L dy = Zg9 + Mpg,
0
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so that

tip
M)y, = l:ﬁ}'Mo—g + ch,(% Vv) :l Z As(yy -~ ¥3) -

tip
g > mly; -y (p2)
i=J
Similarly, the shear at any station yJ is

tip

(S0y, - [Z" 8 s apgfoo - Vvo)avL} S m-szm 09
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TAELE I.- CHARACTERISTICS OF ATRPLANE A
(a) Structure
[Date taken from ref. 8]
m3 ,
Station Teajis € W Q
in. lb-j-;ecE 1b-in. EI-'sec2 i%f b L
0 28.5 | ==~===- 0 ~0.078 0
133 16.3 85,234 -39.26 -.031 -.00084
217 5.27 1,288 0 -.0hT -.0016
307 9.15 61,717 -62.19 .16k -.00183
428 .97Th 536 0 374 -.00185
548 .686 287 0 670 -.00187
638 153 3h.1 0 .936 -.00188
-sece '
Mo, &i.:f_c ......................... 61.033
- 2
My, Ré‘fc Ce e e 1.607
1, CPB ¢ ¢ o o o o o o o o o o o o o o o o s s 4 s e 4 e e o 4 3.365
(b) Shock strut
[Ma.nufacturer‘s d.a.ta]
P L 4 0.163
T 0.21k4
Ap,sgft . . .. o .00 .. B T T T T T T 0.00173
e T N 5 W e e e e s o 0.2597
Pags IB/8Q £5 ¢ v v v 4 v vt e et e e e e e e e e e e e 30,528
P, BIUBS/CU TE « & v ¢ 4 4 4 s e e e e e e ek e e e e e e 1.626
(c) Unsprung mass
[Manufacturer's d.a:i:a.]
Wity 3D ¢ o o o v o o e e e e et e e e e e e e e e e e e e 700
Tires (one per landing gear) . « « « « + « « & 56-inch smooth contour
Tire pressure, 10/Sq 1. « « « « o ¢ o + o « o s o « o s o o+ o o « T0
My, IB/FE ¢ o 4 o e o o & o & o 4 o o o s 4 e e e e e e e e 85,309
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TABLE II.- CHARACTERISTICS OF AIRFLANE B
(a) Structure

[Unpublished. d.a.ta._]

Station, i o Leass €45 W
in. -:l-bi-:,':-f-l-e—c—- 1b-in. -sec2 in. 11 P1y
0 109.534 h, 475,280 200.37 -0.0585 | -0.0001T76
8L - 4,695 3,046 k.65 -.0579 -.000187
168 L.920 19,490 =24.20 -.0350 -.00020%
252 22,177 278,942 ~101.22 .0037 -.000231
336 2.560 2,161 2.44 .090 -.000272
420 2.557 1,988 2.60 L1842 -.000322
504 1.773 1,136 .92 -3255 -.000379
588 3.269 2,h7h ~1k.79 Jb772 -.000435
672 8.628 8,439 -26.88 .6369 -.000482
756 1.1h4 500 .60 8181 -.000514
8o .520 186 5.48 1.000 -.000526
Mo Tomsee® 161. 775
» == . e
—eeal
M1, 1bi§f° ........................... 6.9096
ity TR o1 - S A D I e 1.29
(b) Shock strut
[Values estimeted from generallized curves of ref. 6]
3
e = BBE L e e e e e e e e e e e e 17,900
2(Caan)= Tt
N T & T 0.585
T T 4 T T R R I I 0.7095
Pags IB/BA FE o o o o v v v v i e e e e e e e e e e e e 30,528
(¢) Unsprung Mass
[Ma.nufa.cturer's data]
e 2,300
Tires (two per landing E&8T) « « « « « o « « o « o « s e e e 56 X 16
m per landing gear, 1b/ft . ¢« « 4 o o ¢ ¢ ¢ e o 4 4 e e 0 o 280,180
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N
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| _—Fluid

T.%.'IVHJ-
_\

TN
11

TR
|
l“
\
ij

() System with two degrees (b) Schematic representation of
of freedom. shock strut.

Figure 1.~ Dynamical system (rigid airplane) considered in reference 6.



60 . ) NACA TN 3467

Reference plane e R e

(a) Coordinates slong elastic axis.

Reference plane

Station mass center

Flastlc axis

(b) Coordinates at any transverse station.

. . Reference plane
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Figure 2.- Coordinates for airplane structure.
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